Inactivation of the Dorsal Premotor Area Disrupts Internally Generated, But Not Visually Guided, Sequential Movements.
نویسندگان
چکیده
UNLABELLED As skill on a sequence of movements is acquired through practice, each movement in the sequence becomes seamlessly associated with another. To study the neural basis of acquired skills, we trained two monkeys (Cebus apella) to perform two sequential reaching tasks. In one task, sequential movements were instructed by visual cues, whereas in the other task, movements were generated from memory after extended practice. Then, we examined neural activity in the dorsal premotor area (PMd) and the effects of its local inactivation during performance of each task. Comparable numbers of neurons in the PMd were active during the two tasks. However, inactivation of the PMd had a marked effect only on the performance of sequential movements that were guided by memory. These results emphasize the importance of the PMd in the internal generation of sequential movements, perhaps through maintaining arbitrary motor-motor associations. SIGNIFICANCE STATEMENT The dorsal premotor cortex (PMd) has long been thought to be a critical node in the cortical networks responsible for visually guided reaching. Here we show that PMd neurons are active during both visually guided and internally generated sequential movements. In addition, we found that local inactivation of the PMd has a marked effect only on the performance of sequential movements that were internally generated. These observations suggest that, although the PMd may participate in the generation of visually guided sequences, it is more important for the generation of internally guided sequences.
منابع مشابه
Temporary inactivation in the primate motor thalamus during visually triggered and internally generated limb movements.
To better understand the contribution of cerebellar- and basal ganglia-receiving areas of the thalamus [ventral posterolateral nucleus, pars oralis (VPLo), area X, ventral lateral nucleus, pars oralis (VLo), or ventral anterior nucleus, pars parvicellularis (VApc)] to movements based on external versus internal cues, we temporarily inactivated these individual nuclei in two monkeys trained to m...
متن کاملPulvinar inactivation disrupts selection of movement plans.
The coordinated movement of the eyes and hands under visual guidance is an essential part of goal-directed behavior. Several cortical areas known to be involved in this process exchange projections with the dorsal aspect of the thalamic pulvinar nucleus, suggesting that this structure may play a central role in visuomotor behavior. Here, we used reversible inactivation to investigate the role o...
متن کاملDifferential roles of the frontal and parietal cortices in the control of saccades.
Although externally as well as internally-guided eye movements allow us to flexibly explore the visual environment, their differential neural mechanisms remain elusive. A better understanding of these neural mechanisms will help us to understand the control of action and to elucidate the nature of cognitive deficits in certain psychiatric populations (e.g., schizophrenia) that show increased la...
متن کاملSeparating brain regions involved in internally guided and visual feedback control of moving effectors: an event-related fMRI study.
Online visual information of moving effectors plays important roles in visually guided movements. The present study used event-related functional resonance imaging to temporally separate neural activity associated with internally guided and visual feedback control of moving effectors. Using a cursor controlled by a computer mouse, participants traced curved lines on a screen. During this moveme...
متن کاملExtended Practice of a Motor Skill Is Associated with Reduced Metabolic Activity in M 1 NATHALIE
How does long-term training and the development of motor skill modify the activity of the primary motor cortex (M1)? To address this issue we trained monkeys for ~1–6 years to perform visually-guided and internally-generated sequences of reaching movements. Then, we used 14C-2deoxyglucose (2DG) uptake and single neuron recording to measure metabolic and neuron activity in M1. After extended pra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 36 6 شماره
صفحات -
تاریخ انتشار 2016